Split-panel Jackknife Estimation of Fixed-effect Models
نویسندگان
چکیده
We propose a jackknife for reducing the order of the bias of maximum likelihood estimates of nonlinear dynamic fixed effects panel models. In its simplest form, the half-panel jackknife, the estimator is just 2θ̂ − θ1/2, where θ̂ is the MLE from the full panel and θ1/2 is the average of the two half-panel MLEs, each using T/2 time periods and all N cross-sectional units. This estimator eliminates the first-order bias of θ̂. The order of the bias is further reduced if two partitions of the panel are used, for example, two half-panels and three 1/3-panels, and the corresponding MLEs. On further partitioning the panel, any order of bias reduction can be achieved. The split-panel jackknife estimators are asymptotically normal, centered at the true value, with variance equal to that of the MLE under asymptotics where T is allowed to grow slowly with N . In analogous fashion, the split-panel jackknife reduces the bias of the profile likelihood and the bias of marginal-effect estimates. Simulations in fixed-effect dynamic discrete-choice models with small T show that the split-panel jackknife effectively reduces the bias of the MLE and yields confidence intervals with much better coverage. JEL: C13, C14, C22, C23
منابع مشابه
Nonlinear Panel Models with Interactive Effects∗
This paper considers estimation and inference on semiparametric nonlinear panel single index models with predetermined explanatory variables and interactive individual and time effects. These include static and dynamic probit, logit, and Poisson models. Fixed effects conditional maximum likelihood estimation is challenging because the log likelihood function is not concave in the individual and...
متن کاملIndividual and Time Effects in Nonlinear Panel Data Models with Large N , T
Fixed effects estimators of panel models can be severely biased because of the wellknown incidental parameters problem. We develop analytical and jackknife bias corrections for nonlinear models with both individual and time effects. For asymptotics where the time-dimension (T ) grows with the cross-sectional dimension (N), the time effects introduce additional incidental parameter bias. As the ...
متن کاملThe Effect of Nonresponse Primary Sampling Units on Estimating the Variance of Changes by Jackknife Method (Case Study: Labor Force Survey Data for 2009 and 2010)
Abstract. According to the importance of presenting change estimation of labor force survey indicators along with their variance, in this paper, the use of Jackknife method in estimating variance of changes has been investigated. Then, the effect of nonresponse primary sampling units on estimating the variance of changes has been studied by use of Jackknife method via intensive simulation stud...
متن کاملThe Effect of Corruption on Shadow Economy: An Empirical Analysis Based on Panel Data
Quite often shadow economy (SE) and corruption are seen as "twins", which need each other or fight against each other and theoretically can be either complements or substitutes. Therefore, the relationship between SE and corruption has been a controversial and polemical issue and in the spotlight of a remarkable collection of economists and social researchers. The main objective of this study ...
متن کاملNonparametric Estimation of the Marginal Effect in Fixed-Effect Panel Data Models: An Application on the Environmental Kuznets Curve∗
This paper considers nonparametric estimation of panel data models using local linear least squares when fixed effects present. The local marginal effect is of the main interest. A withingroup type nonparametric estimator is developed, where the fixed effects are eliminated by subtracting individual specific locally weighted time average (i.e., using the local within transformation). It is show...
متن کامل